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Quasi-elastic scattering by semiflexible rings is discussed with a modified version of an earlier theory due 
to Soda and Berg. The modified theory automatically yields correct results in the highly flexible Gaussian 
limit, but is found to be erroneous at  very high degrees of stiffness. For moderate degrees of stiffness, the 
results obtained for the first cumulant should be reliable. 
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INTRODUCTION 

The conformation and dynamics of semiflexible polymeric 
rings have been of interest ever since the recognition of 
circular DNA. In the past few years this interest has been 
augmented by the appearance of various synthetic 
macrocycles, including cyclopoly(dimethylsiloxanes) and 
cyclopoly(styrenes) ~-¢. In the present paper we discuss 
some aspects of quasi-elastic light (or neutron) scattering 
by such rings, augmenting and modifying a previous 
theoretical presentation by one of us s. We concentrate 
mainly on low scattering vectors and moderate degrees 
of chain stiffness. Hydrodynamic interactions are, as 
before s, described at the pre-averaged level. Excluded- 
volume effects are neglected. 

The translational diffusion and intrinsic viscosity of 
semiflexible rings have been treated by Fujii and 
Yamakawa 6. 

MODIFIED SODA-BERG MODEL 

The previous model s built on an earlier treatment of 
free-draining semiflexible rings by Berg 7, who adapted 
the open-chain theory of Harris and Hearst (HH) s'9 to 
the cyclic case. Hereinafter we refer to it as the SB (for 
'Soda-Berg') model. The main purpose of that work was 
to introduce the hydrodynamic interactions, and to 
display the form of the results for the case of a continuous 
ring or chain. 

A basic deficiency of the HH model is that it fails to 
preserve a constant contour length of the chain. This was 
well known to its creators, and is thoroughly discussed 
elsewhere by one of us ~°. Each bond in the chain is 
constrained to have a fixed mean-square length, but 
fluctuations about this value still occur. The practical 
advantage of the quadratic condition is of course that 
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the effective potential energy is still Gaussian, permitting 
the construction of a set of normal coordinates; indeed, 
Simon 11 pointed out that the HH model is equivalent 
to a bead-and-spring construction with Gaussian springs 
between second as well as nearest neighbours. For a ring 
of N beads and N bonds, the model is therefore described 
by Langevin equations (or equivalent diffusion equations) 
in 3N dimensions. Rigorous constraints to produce 
constant bond lengths (and perhaps also bond angles) 
would require much more difficult formalisms such as 
those of Fixman and Kovac 12 or of Titulaer and 
Deutch 13, and these are not contemplated here. 

Our modification of the original SB model s is merely 
to alter numerical factors in several of the working 
equations. In constructing his theory, Berg 7 contended 
that the intended constraint of each of the N bond lengths 
to a constant value would reduce the number of degrees 
of freedom to 2N, and he used this figure in applying the 
fluctuation-dissipation theorem. (This argument was no t  

made by HH.) The Berg option was used in the original 
SB theory s. From a purely practical point of view, it is 
unacceptable because it fails to reproduce the known 1# 
relations for Gaussian chains in the limit of high 
flexibility. When the total number of degrees of freedom 
is taken as 3N (as in the present paper), the correct 
high-flexibility limit is obtained. However, even after this 
change, the behaviour of the model in the rigid-ring limit 
(Appendix C) fails to match the known exact results ~s. 

More fundamentally, the same basic question 
regarding constrained coordinates has often been 
discussed previously, for example by Fixman 16 and 
Helfand 1 T. Since physical bonds are never perfectly rigid, 
each bond coordinate naturally shares in the equipartition 
of kinetic energy. This is seen very clearly, for example, 
in the presentation of Titulaer and Deutch ~3. It is also 
evident for the physical SB model, since after the 
imposition of the constraints on the second moments 
there are still 3N variable coordinates described by 
Langevin equations, and N of these describe bond 
stretching (of Gaussian springs). With more realistic 
stiff-chain models ~ o.~ 2,13, these degrees of freedom would 
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still exist, but they would be described by very different 
dynamical equations. 

Thus far in the literature, models of the HH type have 
almost always been developed in terms of Langevin 
equations. Passage to the related Fokker-Planck 
equation was avoided, and of course is not necessary; 
but if the usual path to the diffusion limit is followed 
(Appendix A) the kinetic energy problem is automatically 
avoided and answered correctly. With augmentation of 
the kinetic energy by a factor of 3/2, the various SB 
equations 5'7 can now be further investigated. It is only 
necessary to multiply the thermal energy kBT by 3/2 
wherever this occurs. 

When the present work was started, we had hoped to 
adapt to rings a tractable and rather accurate 
approximate treatment of the statistics of worm-like 
chains due to Koyama Is and already used successfully 19 
for the open-chain light-scattering problem. However, 
the Koyama method requires an expression for the fourth 
moments of the inter-bead distances; this is of course 
well known for the Kratky-Porod worm-like open 
chain 2°'21, but so far we have been unable to derive (or 
find in the literature) its counterpart for a worm-like ring. 

Since the HH model has been shown to give rather 
good results for low-q scattering by open chains no 
shorter than a few persistence lengths ~ 9, we consider that 
our modified SB theory should have a similar range of 
applicability. 

In view of the fact that the HH and SB models place 
constraints directly on the second moments of bond 
lengths, we should expect to obtain rather good 
predictions of mean-square radii of gyration. For low 
stiffness, this was already verified by Berg, who found 
only small departures of the calculated mean-square radii 
(S 2) from values predicted for a worm-like ring by Fujii 
and Yamakawa 6. It is not difficult to extend Berg's 
calculations numerically, and we find that his expression 
for (S 2) agrees well (though not perfectly), over the 
whole range of stiffness, with the virtually exact 
expression given by Shimada and Yamakawa 22. This 
reinforces the statement of Berg, on physical grounds, 
that his formalism for rings is more successful than the 
Harris-Hearst theory for open chains. However, 
evaluation of the particle scattering factor P(q) in the 
rigid-ring limit shows (Appendix C) that the model fails 
rather badly to match the details of the ring conforma- 
tion, even though in this limit it gives the correct 
mean-square radius of gyration. 

QUASI-ELASTIC SCATTERING AND FIRST 
CUMULANT 

The equations to be displayed differ from corresponding 
ones by Soda 5 or Berg 7 only in certain numerical factors. 
In referring to one of their equations we shall use a 
corresponding prefix Sa or Bg. We work, except in 
Appendix A, entirely in the continuous-ring limit. 

The dynamic structure factor is (Sa65): 

f L/2 S(q, t)= 2L~t 2 exp(-q2Dt) ds c(q, s, t) 
dO 

with a modified form of (Sa64): 

In c(q, s, t) = - ~ (2kB Tq2/L2.) 
n = l  

x [1 --cos(2nsn/L) exp(--t/z.)] (1) 

Here q = (4n/2) sin(0/2), the magnitude of the scattering 
vector; ~ is excess polarizability per unit length; L is 
contour length; and D is the translational diffusion 
coefficient. The quantities 2, and z, are eigenvalue and 
relaxation time of the nth normal mode. For the 
continuous ring, the former is given by (Sa36): 

2. = e(2nn/L ) 4 + x(2nn/L ) 2 

and the latter by (Sa33): 

z.=~./2. 

with 

I ('u2 
C.=3 .O/Jo ds r(s) cos(2 . /L) (SaS0) 

The elastic bending constant e is related to the 
persistence length, not by (Bg25) but by: 

e = 3ks T/42 (2) 

which is the original relation of HH 8, where 2 = Kuhn 
length. The other force constant x, formally introduced 
via the constraints on the mean-square bond lengths, is 
in effect a bond-stretching force constant. It is to be found 
from a modified form of (Bg28) or (Sa38), which reads: 

2(re) 1/2/3kB T= coth(xL2/4e) 1/2 _ (4~/xL2)1/2 (3) 

Thus from equations (2) and (3) the eigenvalues 2, of 
(Sa36) can be constructed for any L and 2. Finally, the 
function K(s) to be used in equation (Sa50) for the friction 
factors (, is that presented by Fujii and Yamakawa 6, 
with different analytical expressions for the cases of weak 
or strong bending moduli. 

With the above expressions one can generate modified 
numerical results comparable to those displayed in the 
earlier SB theory 5. Here, however, we restrict our 
attention to the first cumulant and especially to its 
behaviour at low values of q, as exemplified by the 
coefficient C in the relation: 

- [ d  In S(q, t)/dt],=o=F =q2O(1 q-Cq2(S 2) -t-'" ") (4) 

We use equations (Sa66)-(Sa70), appropriately modified, 
to obtain: 

N/2 
C(S2)=2(k2T2/OL 2) ~ ~-12~-x (5) 

n = l  

Further, appropriate modification of (Bg30) and (Bg37) 
g i v e s :  

N/2 
(S2)=6(kBT/L) ~ 2~-x (6) 

. = 1  

so that finally we get: 

C=(kBT/3DL) ~ ( ~ 1 2 ~ I / ~  2~ ~ (7) 

We can now evaluate C numerically from the above 
result together with (Sa36) and (Sa50) given above, plus 
the recipe for the translational diffusion coefficient (Sa52): 

f 
t./2 

D = (ka T/3nqo L) K(s) ds (Sa52) 
dO 

and the Fujii-Yamakawa 6 expressions for K(s). The 
broken curve III of Figure 1 exhibits the result of such 
a calculation, where the logarithmically scaled abscissa 
is the number 2L of Kuhn lengths. For comparison, the 
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Figure 1 Coefficient C in first cumulant, equation (4), for semiflexible 
structures as a function of the number 2L of Kuhn lengths: curve I, 
open chain, Koyama model; curve II, open chain, Hearst-Beals-Harris 
model; curve III, ring, modified SB model (present paper). Rigid limits 
are shown for: a, rigid rod; b, rigid ring; c, rigid ring according to 
modified SB model 

full curves I and II represent the published calculations 19 
for semiflexible linear chains, also with pre-averaged 
hydrodynamic interactions, based on the Koyama 18 
interpolation and on the Hearst-Beals-Harris 9 model, 
respectively. For all three curves, the ratio of the chain 
diameter d to its Kuhn length 1/2 is kept at 2d= 0.003. 
The Gaussian limits of curves I (or II) and III at very 
large 2L are 2/15 and 1/12, respectively. Thus, the ratio 
C(ring)/C(open) starts at 5/8 for very flexible chains, 
grows to a value of about 0.9 at 2L ~ 10, and ultimately 
drops to 1/2 for the rigid limit ~s. This is the chief new 
result of this paper. 

The C value of 1/12 for Gaussian rings (),L>>I) was 
previously derived by Burchard and Schmidt ~4 by direct 
application of the Akcasu-Guro123 formula. In Appendix 
B we show that the same result follows from equation 
(7). Without modification, the original SB theory would 
lead to C = 1/18. 

At greater degrees of stiffness than 2 L -  1 we cannot 
expect the present theory to be very reliable, as was 
indeed also true for the open-chain calculation ~9 based 
on HH or Koyama models. The rigid-ring limit of the 
present theory can be evaluated exactly (Appendix C). 
It is found that, although the correct radius of gyration 
is obtained, the details of the particle scattering factor 
are quite different from the proper ones, and the value 
of C is 1/3 instead of the exact value 1/15. 
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APPENDIX A 

Diffusion equation for SB model 
The Kirkwood diffusion equation for motion of a 

polymer molecule in solution is well known 21. We write 
it in the form (for a discrete ring of N beads): 

~qJ/(~t = V T- (k B T/f)/-/[VW + (W/k B T)V V] (A 1 ) 

where W(R, t) is the distribution function; R is a column 
matrix of N bead coordinates r~; V is the potential of 
mean force among the beads; and H is the N x N  
hydrodynamic-interaction matrix, which in its pre- 
averaged form has the elements: 

Hi, = &j~ + (1 - fj ,)(f/6~lo)(lrj- rtl-x ) (m2) 

or  

Hit = 6jl + (1 -- 6jt)(f/6r~rlo)K(s ) (A3) 

in the symbolism of Fujii and Yamakawa 6. Here f is the 
bead friction coefficient and r/o the solvent viscosity. 

For the discrete SB ring the potential is given by 
equation (Sa6), which in matrix form is: 

2 V = ~oRT.4AR + xoRTAR (A4) 

where the Trplitz matrix A has the elements: 

Akl=23kt--(~k,l+l--(~k+l,t  3k,Z+N= ~kl (A5) 

The diffusion equation in this case is thus: 

OW/Ot = V T. (k B T / f  )/-/[VW + (t}t/k u T)(eoAAR + xoAR)] 
(A6) 

Note that our A is not the matrix of Soda 5 but the more 
common Rouse connectivity matrix 21. If we now 
introduce Fourier coordinates (which for the ring are 
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necessarily normal coordinates) following equations 
(Sal9) through (Sa30), and then use these relations in 
equation (A6), the diffusion equation becomes: 

O~/Ot = ~ (ka T/b(.)(O/Oq.). [(O~P/Oq. + (W/k .  T )b2 .q . ]  
n=O 

(A7) 
with the symbols defined as in ref. 5. Appropriate 
integrations over this equation yield equations (Sa31)- 
(Sa33) for the normal-coordinate correlation functions, 
but the equilibrium values are not given by equation 
(Sa34), but by: 

(Iq.21 > = 3k B T/b 2, (A8)  

Conversion of all results to the continuous-ring limit 
proceeds exactly as in ref. 5. 

We call attention here to the basic similarity between 
our model and the 'optimum Rouse-Zimm model' 
described by Bixon and Zwanzig 24. Examination of their 
equation (48) for semiflexible chains and transcription to 
the case of a ring shows that the effective potential of 
our equation (A4) is of the same form as theirs. However, 
their ratio of coefficients of the two terms is not related 
to the persistence length in the same way as eo/Xo in the 
SB model. 

APPENDIX B 

Flexible Gaussian limit 
Here we evaluate C for very flexible rings, setting e = 0. 

Then from equation (Sa36) we have: 

2. = 4x(mr/ L ) 2 (B1) 

Also in this limit: 

K(s)  = (6L/Tz) l /2s-  1/2(1 - s ) -  1/2 (B2) 

Thus from equations (7) and (Sa52) we get: 
f L/2 

n -2  s - I / 2 ( L - - s )  -1/2 c o s ( 2 n n s / L ) d s  
n~l  dO 

C - (B3) 

f 
L/2 

3 ~ n -2 s - 1 / 2 ( L - s ) - l / 2 d s  
n>~ l dO 

Now the required sums are25: 

~ n  = zr2/6 2 

n = l  

n -  z cos(21rns/L ) = (rc2/6)[ 1 - 6(s/L ) + 6(s/L ) 2] 
n = l  

so that 

i1/2 [x-x/z( 1 - x ) -  X /2 -6x l /2 (  1 - x) l/z] dx  

C = d 0 -- 1/12 ~ 1/2 
3 X-1/2(1- -X)  -1/2 dx 

dO 
(B4) 

in agreement with the calculation of Burchard and 
Schmidt 14 via the Akcasu-Guro123 formula. 

APPENDIX C 

Rioid-rino limit 
Near the rigid limit, the solution of equation (3) is 

I i I I I I I I I 

• t \  
/ \ 

• I ~  ~ - " . . . .  1 

,3 I t I 1 a~ 
0 2 4 6 8 I0 12 14 16 

Figure 2 Holtzer  plot, uP(q) against u, where q=sea t te r ing  vector, 
u2=qZ(S2): full curve, exact;  broken curve, SB model  

given by a modified equation (Bg44) as: 

x = - (3kB T/2L2)(~z 2 -- 22L + . . .  ) (C1) 

which upon substitution in (Sa36) along with equation 
(2) gives the eigenvalues: 

2,/12ka T = (n4/2L4)(n4 - n 2) q- 21z2n2/L 3 (C2) 

Thus, in the limit 2L ~ 0 we have: 

)],1 = 24~2ka T/L3 
(C3) 

2 . ~ o o  ( n > l )  

and we are left, as we should be, with just the three 
rotational degrees of freedom, albeit with spherical 
symmetry. Hence, for rigid rings, equations (1) and (Sa65) 
give: 

[~ L/2 
S(q, t )=  2Lg 2 exp(-q2Dt) ~o ds exp{-(q2LZ/12~z) 

x [1--exp(--t/zx) cos(21rs/L)]} (C4) 

With changes of variable: 

z - q2L2/121r 2 = q2($2) /3  

z' = z e x p ( -  t/z1) (C5) 

v = 2zrs/L 

this becomes: 

fo ' S(q, t) = L2e 2 exp(-  q2Dt) exp(-  z). g -  1 exp(z' cos v) dv 

= L2e 2 exp(-  q2Dt) exp(-  Z)Io(z' ) (C6) 

where Io is a Bessel function of zero order; lo(z')= Jo(iz'). 
The corresponding particle scattering factor is: 

P ( q ) -  S(q, 0)/S(0, 0) = e x p ( -  Z)Io(z ) (C7) 

This function is shown as the broken curve in Figure 2 
in the form of a Holtzer plot, uP(q) against u, where 
u 2 -  q2($2)  = 3z. The full curve in the figure is computed 
from the exact relation 26 for such a ring: 

P(q)--  Jg(qr sin fl) sin fl dfl (C8) 

1814 POLYMER, 1990, Vol 31, October 



where Jo is a Bessel function. Although the curves match 
at low angles (which they must, since Berg obtained the 
correct mean-square radius of gyration), they deviate 
greatly at higher angles. The absence of oscillations in 
the curve for (C7) clearly points to a geometry very 
different from that of a rigid planar ring. 

The dynamic behaviour predicted by (C6) also deviates 
considerably from that of a rigid ring. The first cumulant 
is found to be: 

F = q2D + [zI 1 (z)/tllo(z)] + . . .  (C9) 

where It is also a common Bessel function. To find the 
relaxation time zt for the model, we need equation (3) 
and (Sa50): 

/ rL/2 
( 1  = 3nqo/Jo cos(2ns/g)g(s)ds 

For the rigid ring, Fujii and Yamakawa 6 use: 

K(s) = (rc/L)[sin2(ns/L) + (zd/2L) 2]- 1/2 (C10) 

For thin rings, d/L << 1, neglect of all but the leading term 

Scattering by, rings: K. Huber et al. 

in the integral leads to: 

(x = 3n~o/ln(L/d) (C11) 

and hence to 

zt = ~oL3/8rckB Tln(L/d) (C12) 

This number is 3/2 times the correct result (with 
pre-averaged hydrodynamic interactions) for a rigid 
ring 27'28 and twice that obtained from their 'optimized 
Rouse-Zimm theory' by Bixon and Zwanzig 24. 

The translational diffusion coefficient, from equation 
(Sa52), is: 

D = (k 8 T/37t~lo L) In(L/d) (C13) 

Substitution of (C12) and (C13) into (C9) then produces: 

C = 1/3 (C14) 

which is in wide disagreement with the correct value z5 
of only 1/15 for rigid rings with pre-averaged 
hydrodynamics. This discrepancy reinforces our-belief 
that the modified SB model, like its HH ancestor, is most 
useful for small or moderate degrees of chain stiffness. 
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